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ABSTRACT-Cloud storage enables users  to  remotely store their 
data and enjoy  the  on-demand  high  quality  cloud applications 
without the burden of local hardware and software management. 
Though the benefits are clear, such a service is also relinquishing 
users’ physical possession of their outsourced data, which 
inevitably poses new security risks towards the correctness of the 
data in cloud. In order to address this new problem and further 
achieve a secure and dependable cloud storage service, we 
propose in this paper a flexible distributed storage integrity 
auditing mechanism, utilizing the homomorphic token and 
distributed erasure-coded data. The proposed design allows users 
to audit the cloud storage with very lightweight communication 
and computation cost. The auditing result not only ensures strong 
cloud storage correctness guarantee, but also simultaneously 
achieves fast data error localization, i.e., the identification of 
misbehaving server. Considering the cloud data are dynamic in 
nature, the proposed design further supports secure and efficient 
dynamic operations on outsourced data, including block 
modification, deletion, and append. Analysis shows the proposed 
scheme is highly efficient and resilient against Byzantine failure, 
malicious data modification attack, and even server colluding 
attacks 
 

1   INTRODUCTION 
Several trends are opening up the era of Cloud Computing, 
which is an Internet-based development and use of computer 
technology. The ever cheaper and more powerful processors, 
together with the software as a service (SaaS) computing 
architecture, are transforming data centers into pools of 
computing service on a huge scale. The increasing network 
bandwidth and reliable yet flexible network connections 
make it even possible that users can now subscribe high 
quality services from data and software that reside solely on 
remote data centers. Moving data into the cloud offers great 
convenience to users since they don't have to care about the 
complexities of direct hardware management. The pioneer of 
Cloud Computing vendors, Amazon Simple Storage Service 
(S3) and Amazon Elastic Compute Cloud (EC2) [1] are both 
well known examples. While these internet-based online 
services do provide huge amounts of storage space and 
customizable computing resources, this computing platform 
shift, however, is eliminating the responsibility of local 
machines for data maintenance at the same time. As a result, 
users are at the mercy of their cloud service providers for the 
availability and integrity of their data. Recent downtime of 
Amazon's S3 is such anexample[2].                                                                                                                                          
From the perspective of data security, which has always been 
an important aspect of quality of service, Cloud Com-puting 
inevitably poses new challenging security threats for number 
of reasons. Firstly, traditional cryptographic primitives for the 

purpose of data security protection cannot be directly adopted 
due to the users' loss control of data under Cloud Computing. 
Therefore, verification of correct data storage in the cloud 
must be conducted without explicit knowledge of the whole 
data. Considering various kinds of data for each user stored in 
the cloud and the demand of long term continuous assurance 
of their data safety, the problem of verifying correctness of 
data storage in the cloud becomes even more challenging. 
Secondly, Cloud Computing is not just a third party data 
warehouse. The data stored in the cloud may be frequently 
updated by the users, including insertion, deletion, 
modification, appending, reordering, etc. To ensure storage 
correctness under dynamic data update is hence of paramount 
importance. However, this dynamic feature also makes 
traditional integrity insurance techniques futile and entails 
new solutions. Last but not the least, the deployment of Cloud 
Computing is powered by data centers running in a 
simultaneous, cooperated and distributed manner. Individual 
user's data is redundantly stored in multiple physical 
locations to further reduce the data integrity threats. 
Therefore, distributed protocols for storage correctness 
assurance will be of most importance in achieving a robust 
and secure cloud data storage system in the real world. 
However, such important area remains to be fully explored in 
the literature. 
In this paper, we propose an effective and flexible distributed 
scheme with explicit dynamic data support to ensure the 
correctness of users' data in the cloud. We rely on erasure-
correcting code in the file distribution preparation to prov ide 
redundancies and guarantee the data dependability. This 
construction drastically reduces the communication and 
storage overhead as compared to the traditional replication-
based file distribution techniques. By utilizing the 
homomorphic token with distributed verification of erasure-
coded data, our scheme achieves the storage correctness 
insurance as well as data error localization: whenever data 
corruption has been detected during the storage correctness 
verification, our scheme can almost guarantee the 
simultaneous localization of data errors, i.e., the identification 
of the misbehaving server(s) 
Our work is among the first few ones in this field to consider 
distributed data storage in Cloud Computing. Our 
contribution can be summarized as the following three 
aspects. 
1) Compared to many of its predecessors, which only provide 
binary results about the storage state across the distributed 
servers, the challenge-response protocol in our work further 
provides the localization of data error.  
2) Unlike most prior works for ensuring remote data 
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integrity, the new scheme supports secure and efficient 
dynamic operations on data blocks, including: update, delete 
and append. 
3) Extensive security and performance analysis shows that 
the proposed scheme is highly efficient and resilient against 
Byzantine failure, malicious data modification attack, and 
even server colluding attacks.  
The rest of the paper is organized as follows. Section II 
introduces the system model, adversary model, our design 
goal and notations. Then we provide the detailed description 
of our scheme in Section III and IV. Section V gives the 
security analysis and performance evaluations, followed by 
Section VI which overviews the related work. Finally, 
Section VII gives the concluding remark of the whole paper. 
 

2   PROBLEM STATEMENT 
2.1 System Model 
Representative network architecture for cloud data storage is 
illustrated in Figure 1. Three different network entities can be 
identified as follows: 
* User: users, who have data to be stored in the cloud and 
rely on the cloud for data computation, can be either 
enterprise or individual customers.  
* Cloud Server (CS): an entity, which is managed by cloud 
service provider (CSP) to provide data storage service and 
has significant storage space and computation resources (we 
will not differentiate CS and CSP hereafter). 
* Third Party Auditor (TPA): an optional TPA, who has 
expertise and capabilities that users may not have, is trusted 
to assess and expose risk of cloud storage services on behalf 
of the users upon request.  

In cloud data storage, a user stores his data through a CSP 
into a set of cloud servers, which are running in a 
simultaneous, cooperated and distributed manner. Data 
redundancy can be employed with technique of erasure-
correcting code to further tolerate faults or server crash as 
user's data grows in size and importance. Thereafter, for 
application purposes, the user interacts with the cloud servers 
via CSP to access or retrieve his data. In some cases, the user 
may need to perform block level operations on his data. The 
most general forms of these operations we are considering are 
block update, delete, insert and append.  

As users no longer possess their data locally, it is of critical 
importance to assure users that their data are being correctly 
stored and maintained. That is, users should be equipped with 
security means so that they can make continuous correctness 
assurance of their stored data even without the existence of 
local copies. In case that users do not necessarily have the 
time, feasibility or resources to monitor their data, they can 
delegate the tasks to an optional trusted TPA of their 
respective choices. 
2.2  Adversary Model 
From user’s perspective, the adversary model has to capture all 
kinds of threats towards his cloud data integrity. Because 
cloud data do not reside at user ’s local site but at CSP’s 
address domain, these threats can come from two different 
sources: internal and external attacks. For internal attacks, a 

CSP can be self-interested, untrusted and possibly malicious. 
Not only does it desire to move data that has not been or is 
rarely accessed to a lower tier of storage than agreed for 
monetary reasons, but it may  also  attempt  to  hide  a  data  
loss  incident  due  to management errors, Byzantine failures 
and so on. For external attacks, data integrity threats may 
come from outsiders who are beyond the control domain of 
CSP, for example, the economically motivated attackers. They 
may compromise a number of cloud data storage servers in 
different time intervals and subsequently be able to modify 
or delete users’ data while remaining undetected by CSP. 

 
2.3 Design Goals 
To ensure the security and dependability for cloud data 
storage under the aforementioned adversary model, we aim  
to  design  efficient  mechanisms  for  dynamic  data verifica -
tion  and   operation  and  achieve  the  following  goals: (1) 
Storage correctness: to ensure users that  their data  are 
indeed  stored  appropriately  and  kept  intact  all  the  time 
in  the cloud.  (2) Fast localization of data error:  to effect 
ively  locate  the  malfunctioning  server when data corrupt -
tion  has  been  detected.   (3) Dynamic  data  support:  to  
maintain  the same  level  of  storage correctness  assurance  
even  if  users  modify,  delete  or append their data files  in 
the cloud.(4) Dependability:  to  enhance  data availability 
against Byzantine failures, malicious data modification and 
server colluding attacks, i.e. minimizing the effect brought by 
data  errors  or  server   failures.  (5) Light weight: to enable 
users to perform storage  correctness checks with minimum 
overhead. 
 

3. ENSURING CLOUD DATA STORAGE 
In cloud data storage system, users store their data in the 
cloud and no longer possess the data locally. Thus, the 
correctness and availability of the data files being stored o n 
the distributed cloud servers must be guaranteed. One of the 
key issues is to effectively detect any unauthorized data 
modification and corruption, possibly due to server 
compromise and/or random Byzantine failures. Besides, in 
the distributed case when such inconsistencies are 
successfully detected, to fin d which server the data error lies 
in is also of great significance, since it can be the first step to 
fast recover the storage errors. And/or identifying potential 
threats of external attacks  
To address these problems, our main scheme for ensuring 
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cloud data storage is presented in this section. The first 
part of the section is devoted to a review of basic  tools  
from  coding  theory  that  is  needed  in  our scheme for file 
distribution across cloud servers. Subsequently, it is also 
shown how to derive a challenge-response protocol for 
verifying the storage correctness as well as identifying 
misbehaving servers. Finally, the procedure for file retrieval 
and error recovery based on erasure-correcting code is 
outlined. 
3.1 File Distribution Preparation 
It is well known that erasure-correcting code may be used to 
tolerate multiple failures in distributed storage systems. In 
cloud data storage, we rely on this technique to disperse the 
data file F redundantly across a set of n = m + k distributed 
servers. An(m, k) Reed-Solomon erasure-correcting code is 
used to create k redundancy parity vectors from m data 
vectors in such a way that the original m data vectors can be 
reconstructed from any m out of the m + k data and parity 
vectors. By placing each of the m + k vectors on a different 
server, the original data file can survive the failure of any k 
of the m + k servers without any data loss, with a space 
overhead of k/m. For support of efficient sequential I/O to 
the original file, our file layout is systematic, i.e., the 
unmodified m data file vectors together with k parity vectors 
is distributed across m + k different servers. 
Let F  =  (F1 , F2 , . . . , Fm ) and Fi   =  (f1i , f2i, . . . , fli)
(i  ∈  {1, . . . , m}). Here T (shorthand for transpose) de-notes 
that each F

T 

i  is represented as a column vector, and l denotes   
data vector size in blocks. All these blocks are elements of 
GF (2p

     /                                                                                      \       

 ). The systematic layout with parity vectors is 
achieved with the inform -ation dispersal matrix  A, derived 
from an m×(m+k) Vandermonde matrix [26]:  

      /          1 1 1 1 1          ⎟ 
⎜  β1 β2 
⎜  ⎟ 

βm       βm+1 βn   ⎟ 

⎝  ⎠ , 
β1−1 β2−1 βm−1 βm+1 β

where β
n−1 

j
   After a sequence of elementary row transform 
ationns, the desired matrix A can be written as 

  (j ∈ {1, . . . , n}) are distinct elements randomly 

 
                /     1    0           0    p11 p12 p1k       \
                     ⎜      0      1             0      p

  

21 p22              p

  A= (I / P) ⎜                                                                                        ⎜ 

2k          \                                                         

                

                      \       0 0              1      pm1   pm2            p
 

mk    / 

Where I is a m × m  identity  matrix  and  P is the secret 
parity generation matrix with size m × k.  Note that  A is 
derived from a Vander monde matrix, thus it has the prop 
erty that any m out of the + k columns form an invertible 
matrix. By multiplying F  by  A, the  user  obtains    the 
encoded  file: 
   G = F · A = (G(1) , G(2) , . . . , G(m) , G(m+1) , . . . , G(n)

= (F
 ) 

1 , F2 , . . . , Fm , G(m+1) , . . . , G(n)

where G
 ), 

(j) =   (g1j) , g2j) , . . . , glj) )T 

As noticed, the multiplication reproduces the 
original data file vectors of F and the remaining 
part (G

(j∈   {1, . . . , n}). 

 (m+1) , . . . , G(n)

 

 ) are k parity vectors 
generated based on F. 

 
3.2 Challenge Token Pre-computation  
In order to achieve assurance of data storage correctness and 
data error localization simultaneously, our scheme entirely 
relies on the pre-computed verification tokens. The main idea 
is as follows: before file distribution the user pre-compute s a 
certain number of short verification tokens on individual ve 
ctor G(j)

 

 (j ∈ {1, . . . , n}), each token covering a random 
subset of data blocks. Later, when the user wants to make 
sure the storage correctness for the data in the cloud, he 
challenges the cloud servers with a set of randomly generated 
block indices. Upon receiving challenge, each cloud server 
computes a short “signature” over the specified blocks and 
returns the m to the user. The values of these signatures 
should match the corresponding tokens pre-computed by the 
user. Meanwhile, as all servers operate over the same subset 
of the indices, the requested response values for integrity 
check must also be a valid codeword determined by secret 
matrix P. 

Algorithm 1 Token Pre-computation 
1: procedure  
2: Choose parameters l, n and function f, φ;  
3: Choose the number t of tokens;  
4: Choose the number r of indices per verification;  
5: Generate master key Kprp  and challenge kchal
6: for vector G

;  
(j)

7: for round i← 1, t do  
 , j ← 1, n do  

 

Derive α  = f kchal 
 (i) 

and k(i)
prp  from K

Compute V
PRP 

i
(j)=

∑r
q=1αq

i*G(j)[Øk
(i)

prp 
 (q)]            .  

 end for        
10: end for  
11: end for  
12: Store all the vi
13: end procedure 

s locally.  

 
3.3 Correctness Verification and Error Localization  
 Error localization is key pre requisitefor eliminating errors in 
storage systems.However, many previous schemes don’t  
explicitly consider  the  problem  of  data  errorlocalization, 
Our scheme outperforms those by integrating the correctess 
verification and error localization in our challenge response 
protocol: the response values from servers for each challen ge  
not  only  determine  the correctness  of  the  distributed 
storage,but also contain information to locate potential data 
error(s). 
Algorithm 2  

1) procedure CHALLENGE(i)  
2) Recompute α i  = fkchal (i) and kprp

(i)  from KP RP ;  
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3) Send {α i, kprp

(i)

4) Receive from servers:  
} to all the cloud servers;  

{Ri
(j) =∑r

q=1
  αq

i G(j) [Økprp
(i)

for(j←m+1,n)do 
(q)]|1 ≤ j ≤ n}  

  R(j)← PR(j)−P∑r
q=1 fkj(SIq,j).αq

i,Iq=Økprp
(i)

 
(q) 

7: end for  
8: if ((Ri

(1) , . . . , Ri
(m)) · P==(Ri

(m+1), . . . , Ri
(n)

9: Accept and ready for the next challenge.  
)) then  

10: else  
11: for (j ← 1, n) do  
12: if (Ri

(j) ! =vi
(j)

13: return server j is misbehaving. 
 ) then  

14: end if  
15: end for  
16: end if  
17: end procedure  
 
3.4 File Retrieval and Error Recovery 

Since our layout of file matrix is systematic, the user can 
reconstruct the original file by downloading the data vector s 
assurance is a probabilistic one. However, by choosing 
system param-eters (e.g., r, l, t) appropriately and conducting 
enough times of verification, we can guarantee the successful 
file retriev al with high probability. On the other hand, 
whenever the data corruption is detected, the comparison of 
pre-computed tokens and received response values can 
guarantee the identificati on of misbehaving server(s), again 
with high probability, which will be discussed shortly. 
Therefore, the user can always ask servers to send back 
blocks of the r rows specified in the challenge and regenerate 
the correct blocks by erasure correction, shown in Algorithm 
3, as long as there are at most k misbehaving servers are 
identified. The newly recovered blocks can then be 
redistributed to the misbehaving servers to maintain the 
correctness of storage. 
Algorithm 3 Error Recovery 
procedure  

% Assume the block corruptions have been detected 
among  
% the specified  r rows;  
% Assume s ≤ k servers have been identified 

misbehaving  
2: Download r rows of blocks from servers;  
3: Treat s servers as erasures and recover the blocks.  
4: Resend the recovered blocks to corresponding 

servers.  
5: end procedure  

 
3.5 Towards Third Party Auditing 
   As discussed in our architecture, in case the user does not  
have  the  time,  feasibility  or  resources   to  perform the  
storage  correctness  verification,   he  can   optionally delegate  
this  task  to an independent third party  auditor, making  the 
cloud  storage  publicly verifiable. However, as pointed out 
by the recent work [27], [28], to  securely introduce an 

effective TPA, the auditing process should bring   in no new  
vulnerabilities  towards user data pri-vacy.  Namely, TPA 
should not learn user ’s data content through  the  delegated 
data auditing.  Now we  show that with  only  slight  
modification, our protocol can support privacy-preserving 
third party auditing 
      The new design is based on the observation of linear 
property of  the  parity  vector blinding process. Recall that the 
reason of  blinding process is for  protection of the secret 
matrix P against cloud servers. 
 

4.  PROVIDING DYNAMIC DATA OPERATION SUPPORT 
So far, we assumed that F represents static or archived data. 
This model may fit some application scenarios, such as 
libraries and scientific datasets. However, in cloud data 
storage, there are many potential scenarios where data stored 
in the cloud is dynamic, like electronic documents, photos, or 
log files etc. Therefore, it is crucial to consider the dynamic 
case, where a user may wish to perform various block-level 
perations of update, delete and append to modify the data file 
while maintaining the storage correctness assurance. 

In this section, we will show how our scheme can 
explicitly and efficiently handle dynamic data operations for 
cloud data storage. 
4.1 Update Operation 
In cloud data storage, sometimes the user may need to modify 
some data block(s) stored in the cloud, from its current value 
fij to a new one, fij + fij . We refer this operation as data 
update. Due to the linear property of Reed-Solomon code, a 
user can perform the update operation and generate the 
updated parity blocks by using fij only, without involving any 
other unchanged blocks.blocks may need to be deleted. The 
delete operation we are considering is a general one, in which 
user replaces the data block with zero or some special 
reserved data symbol. From this point of view, the delete 
operation is actually a special case of the data update 
operation, where the original data blocks can be replaced with 
zeros or some predetermined special blocks. Therefore, we 
can rely on the update procedure to support delete operation, 
i.e., by setting fij in F to be − fij

 

 . Also, all the affected tokens 
have to be modified and the updated parity information has to 
be blinded using the same method specified in update 
operation. 

ΔF · A = (ΔG(1) , . . . , ΔG(m) , ΔG(m+1) , . . . , ΔG(n)

= (ΔF
 ) 

1 , . . . , ΔFm , ΔG(m+1) , . . . , ΔG(n)

where ΔG
 ), 

(j)   (j  ∈  { m + 1, . . . , n} ) denotes the update 
information for the parity vector G(j)

4.2 Delete Operation 
 . 
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    Sometimes, after being stored in the cloud, certain   data 
Blocks  may need to be deleted.The delete operation we are 
Considering  is a  general one,  in which  user  replaces  the 
data block  with zero or some special reserved data symbol. 
From this point of view, the delete operation  is  actually   a 
special  case  of   the  data  update  operation,    where    the 
original  data  blocks can  be replaced with  zeros  or  some 
predetermined  special  blocks. Therefore,  we  can rely  on 
the  update  procedure  to  support delete operation, i.e.,  by 
setting  _fij  in _F to be−_fij . Also,  al l the  affected  tokens 
have  to  be modified  and   he updated  parity   information 
has to be blinded using thesame method specified in update 
operation. 
4.3 Append Operation 
In some cases, the user may want to increase the size of his 
stored data by adding blocks at the end of the data file, which 
we refer as data append. We anticipate that the most frequent 
append operation in cloud data storage is bulk append, in 
which the user needs to upload a large number of blocks (not 
a single block) at one time.                                                                                                 
Given  the  file  matrix    F   illustrated  in  file  distribution 
preparation, appending  blocks  towards  the end  of  a data 
file is equivalent  to concatenate  corresponding rows at the 
bottom  of   the  matrix  layout  for file F. In the beginning, 
there  areonly  l  rows  in the  file matrix. To  simplify  the 
presentation ,we  suppose  the  user  wants  to  append    m 
blocks at the end offile F, denoted as (fl+1,1, fl+1,2, ..., 
fl+1,m) (We can always use zero  padding  to  make  a  row  
of    m elements.). With the  secret  matrix  P, the user can 
directly calculate the append 
(fl+1,1, ..., fl+1,m) · P = (g (m+1)), ..., g(n)) 
        To  support  block append operation, we need a slight 
modification to our token precomputation. Specifically, we 
require  the  user  to expect  the  maximum size  in  blocks, 
denoted  as lmax,  for  each  of  his  data vector.  The idea of 
supporting  block   append,  which is similar as  adopted  in 
[13],  relies on the initial budget for the  maximum anticipa 
ted data size lmaxin each encoded data vector as well  as the 
system parameter rmax = ⌈ r ∗  (lmax/l)⌉ for each pre 
computed challenge response token. The pre-computation of  
the  i-th token onserver j is modified as follows: 
                                       l+1                   l+1 
G(j) [Iq ] =    G(j) [φk(i) (q)] , [φk

prp prp 
(i) (q)] ≤ l 

                         0                                   , [φk
 

(i) (q)] > l , 

4.4 Insert Operation 
An insert operation to the data file refers to an append 

operation at the desired index position while maintaining the 
same data block structure for the whole data file, i.e., inser 
ting a block F [j] corresponds to shifting all blocks starting 
with index j + 1 by one slot. An insert operation may affect 
many rows in the logical data file matrix F, and a substantial 
number of computations are required to renumber all the 
subsequent blocks as well as re-compute the challenge-
response tokens. Therefore, an efficient insert operation is 
difficult to supp ort and thus we leave it for our future work. 

 
5. SECURITY ANALYSIS AND PERFORMANCE EVALUATION 

In this section, we analyze our proposed scheme  in terms  of 
security and efficiency. Our security analysis  focuses on  the 
adversary  model  defined in Section II. We also evaluate  the 
efficiency of our scheme via implementation of both file dist 
r ibution preparation and verification tokenpre computation. 
5.1 Correctness Analysis 
 First,  we  analyze  the  correctness of  th verification 
procedure. Upon obtaining all the response Rij)

R

s from     
servers and taking a way the random blind values from  

ij)  (j ∈ {m + 1, . . . , n}), the user relies on the equation (Ri1) 
, . . . , Rim)) · P = (Rim+1) , . . . , Rin)

5.2  Security Strength  

 ) to ensure the storage 
currectness 

In this section, we analyze the security strength of our 
schemes against server colluding attack and explain why 
blind-ing the parity blocks can help improve the security 
strength of our proposed scheme.Recall that in the file 
distribution preparation, the redun-dancy parity vectors are 
calculated via multiplying the file matrix F by P, where P is 
the secret parity generation matrix we later rely on for storage 
correctness assurance. If we disperse all the generated vectors 
directly after token precomputation, i.e., without blinding, 
malicious servers that collaborate can reconstruct the secret P 
matrix easily: they can pick blocks from the same rows 
among the data and parity vectors to establish a set of m · k 
linear equations and solve for the m · k entries of the parit 
generation matrix P. Once they have the knowledge of P, 
those malicious servers can consequently modify any part of 
the data blocks and calculate the corresponding parity blocks, 
and vice versa, making their codeword relationship always 
consistent. Therefore, our stor-age correctness challenge 
scheme would be undermined—even if those modified blocks 
are covered by the specified rows, the storage correctness 
check equation would always hold. 
 

 
1       2     3      4       5       6      7      8      9      10                      
0     0.2   0.4   0.6     0.8   1     1.2   1.4   1.6   1.8     2 

 
   (number of queried rows) r (number of queried rows)  
    (as a percentage of l)0  (as a percentage of l)0 
 
5.3 Performance Evaluation 
We now assess the performance of the proposed storage 
auditing scheme. We focus on the cost of file distribu tion  
preparation as well as the token  generation. Our experiment 
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is conducted on a system with an Intel Core 2 processor 
running at 1.86 GHz, 2048 MB of RAM, and a  7200  RPM 
Western Digital  250  GB Serial ATA drive Algorithms are 
implemented using open-source erasure coding  library  
Jerasure  [31]  written  in  C.  All  results represent the mean 
of 20 trials. 
1) File Distribution Preparation: 
We implemented the gen- As discussed, file distribution 
preparation includes the generation of parity vectors (the 
encoding part) as well as the corresponding parity blinding 
part. We consider two  sets  of  different  parameters  for  the  
(m, k)  Reed-Solomon encoding ,both of which work over 
GF (216

2) Challenge Token Pre-computation 

 ). Figure 4 shows the total cost for preparing a 1  
GB file before  outsourcing.  In  the  figure  on  the  left,  we  
set the  number  of  data vectors m  constant at10,while 
decreasing the number of parity vec tors k  from  10  to 2. In 
the one on the right, we keep the total number of data and 
parity vectors m + k fixed at 22, and change the number of 
data vectors m from18 to10. 

Although in our scheme the number of verification token t  is  a  
fixed  priori  determined  before  file distribution, we can 
overcome this issue by choosing sufficient large t  in  
practice.  For  example,  when  t is  selected  to  be 7300 and 
14600, the data file can be verified every day for the next  
20  years and  40  years, respectively, which should be of 
enough use in practice. Note that instead of directly 
computing ach token, our implementation uses the Horner 
algorithm suggested in [21] to calculate token vij)  from the 
back, and achieves a slightly faster which only require sr  
multiplication and  (r − 1) X OR operations. With Jerasure 
library [31],the multiplication over  GF (216

 

 )  in  our  
experiment  is  based  on  discrete logarithms. 

RELATED WORK 
 Juels et al. [9] described a formal “proof of retrieve ability” 
(POR) model for ensuring the remote data integrity. Their 
scheme combines spot-checking and error correcting code to 
ensure both possession and retrieve ability of files on archive 
service systems. Shacham etal. [16] built on this model and 
constructed a random linear function based homomorphic 
authenticator which enables unlimited number of challenges 
and requires less communication overhead due to its usage of 
relatively small size of BLS signature. Bowers et al. 
[17]proposed an improved framework for POR protocols that 
generalizes both Juels and Shacham’s work. Later in their 
subsequent work, Bowers et al. [20] extended POR model to 
distributed systems. However, all these schemes are focusing 
on static data. The effectiveness of their schemes rests 
primarily on the preprocessing steps that the user conducts 
before outsourcing the data file F. Any change to the contents 
of F, even few bits, must propagate through the error-
correcting code and the corresponding random shuffling 
process, thus introducing significant computation and 
communication complexity. Recently, Dodis et al. [19] gave 
theoretical studies on generalized framework different 
variants of existing POR work. 

 
CONCLUSION 

In this paper, we investigate the problem of data security yin 
cloud data storage, which is essentially a distribute dstorage 
system. To achieve the assurances of cloud data integrity and 
availability and enforce the quality of dependable cloud 
storage service for users, we propose an effective and flexible 
distributed scheme with explicit   dynamic data support, 
including block update, delete, and append. We rely on 
erasure-correcting code in the file distribution preparation to 
provide redundancy parity vectors and guarantee the data 
dependability. By utilizing the homomorphic token with 
distributed verification of erasure-coded data, our scheme 
achieves the integration of storage correctness insurance and 
data error localization, i.e., whenever data corruption has 
been detected during the storage correctness verification 
across the distributed servers, we can almost guarantee the 
simultaneous identification of the misbehaving 
server(s).Considering the time, computation resources, and 
even the related online burden of users, we also provide the 
extension of the proposed main scheme to support third-party 
auditing, where users can safely delegate the integrity 
checking tasks to third-party auditors and beworry-free to use 
the cloud storage services. Through detailed security and 
extensive experiment results, we show that our scheme is 
highly efficient and resilient to Byzantine failure, malicious 
data modification attack, and even server colluding attacks. 
 

ACKNOWLEDGMENTS: 
This work was supported in part by the US National Science 
Foundation under grant CNS-0831963, CNS-0626601, CNS-
0716306, and CNS-0831628. 
 

REFERENCES 
[1]C. Wang, Q. Wang,K. Ren,and W. Lou“Ensuring data storage security in 

cloud computing,” in Proc. of IWQoS’09, July 2009, pp.19. 
[2] Amazon.com, “Amazon web services  (aws)” Online at 

http://aws.amazon.com/, 2009. 
[3] Sun Microsystems, Inc.,  “Building customer trust in cloud com-puting 

with  transparent  security,” Online  at  https://www.sun.  
com/offers/details/sun  transparency.xml, Nov2009  

[4]M.Arrington,“Gmail disaster: Reports or mass email deletions”Online 
at 06/12/28/gmail- disasterreports-of-mass-email-
deletions/,December2006                                

[5]Amazon.com, “Amazon  s3  availability  event:  July 20,2008,”  Online at 
http://status.aws.amazon.com/s3-20080720.html,          July2008.  

[6]S.Wilson,“Appengine   outage,”   Online   at  http://www.cio-
weblog.com/50226711/appengine outage.php, June 2008.  

[7] B. Krebs, “Payment Processor Breach May Be Largest Ever,”   On-line 
at   http://voices.washingtonpost.com/ securityfix/2009/    
01/payment  processor  breach  may  b.html, Jan. 2009.  

[8]A. Juels and J. Burton S. Kaliski, “PORs: Proofs of Retrie vability for 
Large Files,” Proc. of CCS '07, pp. 584–597, 2007.  

[9] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peter-son, 
and D. Song, “Provable data possession at untrusted stores,”in Proc. of 
CCS’07, Alexandria, VA, October 2007,pp. 598-609 

[10] M.A.Shah, M. Baker, J. C.Mogul, and R. Swaminath an, “Audit-ing to 
keep online storage services honest,” in  Proc. of HotOS’07.Berkeley, 
CA, USA: USENIX Association, 2007, pp. 16. 

[11] M. A. Shah, R. Swaminathan, and M. Baker, “Priva cy-preserving audit  
and  extraction  of  digital  contents,”  Cryptology  ePrintArchive, 
Report 2008/186, 2008, http://eprint.iacr.org/ 

[12] G. Ateniese, R. D. Pietro, L. V. Mancini, and G. Tsudik, “S calable and 

Katukam Ganesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5157 - 5163

5162



Efficient Provable Data Possession,” Proc. of SecureComm '08, pp. 1– 
10, 2008.  

[13]Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou,  “Enabling public 
verifiability and data dynamics for storage security in cloud com-
puting,” in Proc. of ESORICS’09, volume 5789 of LNCS.   Springer-
Verlag, Sep. 2009, pp. 355-370. 

[14] C.  Erway,  A.  Kupcu,  C.  Papamanthou,     and     R.   Tamassia, 
“Dynamic provable data possession,” in Proc. of CCS’09, 2009, pp. 
213-222. 

[15] H. Shacham and B. Waters, “Compact proofs  of retrievability,” inProc. 
of Asiacrypt’08, volume 5350 of  LNCS, 2008, pp. 90-107 

 
 
 

 
Krishnachaitanya.Katkam MTech(CSE)Completed   MTech (CSE)   from 
JNTUH in 2011. Having 4+ years ofExperience in Teaching. Present 
working as a   Asst Prof (CSE) in Nigama EngineeringCollege. Published 
international journals also. Interested in Mobile Computing, Computer 
Networks & Mobile Application Development 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Katukam Ganesh et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (5) , 2012,5157 - 5163

5163


	1   Introduction
	2   Problem Statement
	3. Ensuring Cloud Data Storage
	5. Security Analysis And Performance Evaluation
	Conclusion



